Kinetic and Potential Energy Worksheet

Name	

Classify the following as a type of potential energy or kinetic energy (use the letters K or P)

1. A bicyclist pedaling up a hill	2. An archer w	vith his bow drawn	
3. A volleyball player spiking a ball	4. A baseball t	thrown to second base	
5. The chemical bonds in sugar	6. The wind bl	lowing through your hair	
7. Walking down the street	8. Sitting in th	e top of a tree	
9. A bowling ball rolling down the alley	10. A bowling	ball sitting on the rack	

What examples can you find in your home that are examples of kinetic and potential energy? (name two for each type of energy)

11. Kinetic: _	
12. Kinetic: _	
13. Potential:	
14. Potential:	

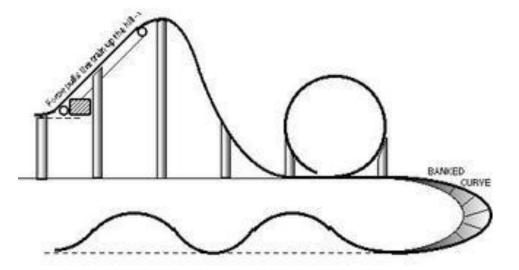
		Kinetic Energy – what does it depend on?	
٢	The	an object moves, the	it has.
٢	The greater the	of a moving object, the	it has.
٢	Kinetic energy depends	s on both	<u>.</u>

Solve the following word problems using the kinetic and potential energy formulas (<u>Be sure to show your work</u>!) <u>Formulas:</u>

	$KE = 0.5 \cdot m \cdot v^2$	OR	PE=m⋅g⋅h	
v = velocity or speed	m = mass in kg		g = 10 m/s/s	h = height in meters

15. You serve a volleyball with a mass of 2.1 kg. The ball leaves your hand with a speed of 30 m/s. The ball has ______ energy. Calculate it.

- 16. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby has a mass of 1.5 kg. The carriage has ______ energy. Calculate it.
- 17. A car is traveling with a velocity of 40 m/s and has a mass of 1120 kg. The car has ______ energy. Calculate it.


18. A cinder block is sitting on a platform 20 m high. It weighs 7.9 kg. The block has energy. Calculate it.

- 19. A roller coaster is at the top of a 72 m hill and weighs 134 kg. The coaster (at this moment) has _____ energy. Calculate it.
- 20. There is a bell at the top of a tower that is 45 m high. The bell weighs 19 kg. The bell has _____ energy. Calculate it.
- 21. Determine the kinetic energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s.
- 22. If the roller coaster car in the above problem were moving with twice the speed, then what would be its new kinetic energy?
- 23. A cart is loaded with a brick and pulled at constant speed along an inclined plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the height of the seat top is 0.45 meters, then what is the potential energy of the loaded cart at the height of the seat-top?
- 24. A 75-kg refrigerator is located on the 70th floor of a skyscraper (300 meters above the ground) What is the potential energy of the refrigerator?
- 25. The potential energy of a 40-kg cannon ball is 14000 J. How high was the cannon ball to have this much potential energy?
- IF most of the energy we use on earth comes from the sun how does that energy (light and thermal) end up
 - As _____ energy in our food
 - As ______ energy of wind or moving water
 - As ______ energy that powers our lights
 - As ______ energy when we move around

	Law of Conservation of	Energy	
Energy can be neither		by ordinary means.	
Energy can be	from one form to another.		
	is thebefore		
and after any energy transformation	n.		
	Energy Transfer		
Energy TRANSFER is the	f	rom one object to another object.	
Example : A cup of hot tea has	energy. Some of this thermal energy is		
to the particles in cold milk, in whi			
	Energy Transformat	ion	
• A change from one form of ener	gy to another.		
 Single Transformations 			
• Occur when	form of	needs to be	
	ner to get work done.		
 Multiple Transformations 			
• Occur when a	of energy transfo	ormations are needed to do work	
 An objects energy can be 	e:		
• As velocity	kinetic energy	and potential energy	
		and potential energy	

Roller Coasters Does energy get transferred or transformed?

- At the top of the first hill you have the _____ Gravitational Potential Energy
- As you begin your trip down the hill you ______ your speed resulting in a transformation from ______.
- At the bottom of the hill right before it goes back upward the ______, but the ______
- As it starts to move up the next hill or loop KE is ______ back into GPE

